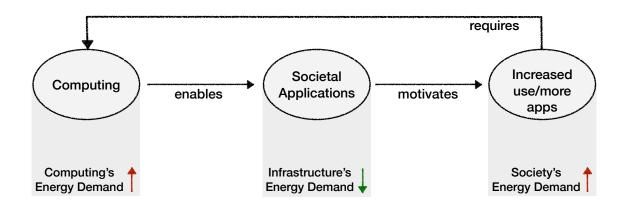
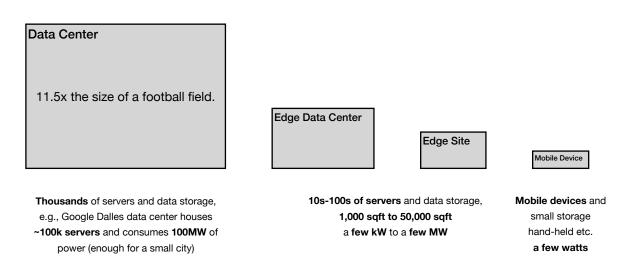

Sustainable Computing

& Computing for Sustainability

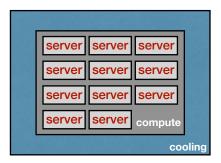
Noman Bashir - University of Massachusetts Amherst nbashir@umass.edu 02/22/2023


Computing's Demand is Growing Exponentially

· Society continues to find useful applications


1

Implications of Increasing Computing Demand


3

How is Computing Demand Served?

note: figures are not drawn to scale.

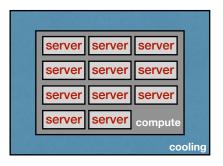
What Contributes to Data Center's Cost, Energy, Carbon Footprint?

Cost

- Servers: Cost a lot and are replaced every 3-5 years.
- Building: Capital investment, depends on location.
- Energy: Major cost of datacenter, depends on location.

Energy

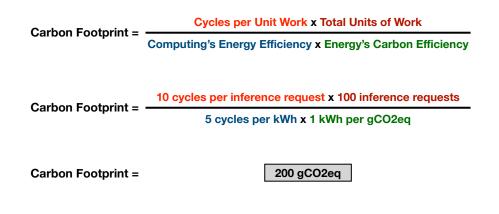
- Computing: Become more energy efficient over time.
- Cooling: Wasted energy, significantly reduced over years.


Carbon

- Embodied: Carbon emissions from manufacturing/building.
- Operational: Emissions from energy use for compute and cooling.

5

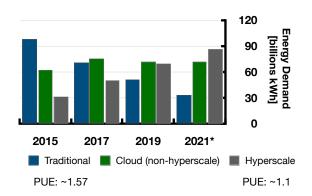
How to Serve Computing's Demand in a Sustainable Manner?


Sustainable —> least carbon intensive way.

Carbon

- Embodied: Carbon emissions from manufacturing/building.
- Operational: Emissions from energy use for compute and cooling.
 - From the energy used to **run** the servers.
 - From the energy used to **cool** the servers.

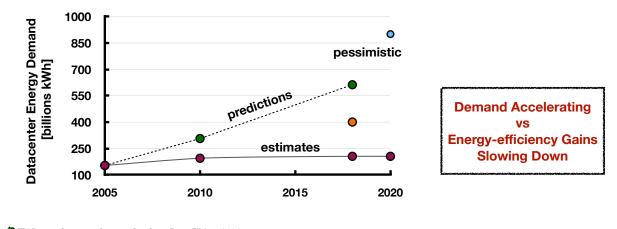
Reduce Embodied and Reduce Operational Emissions


7

History: Driving Factors Behind Innovations in Data Centers

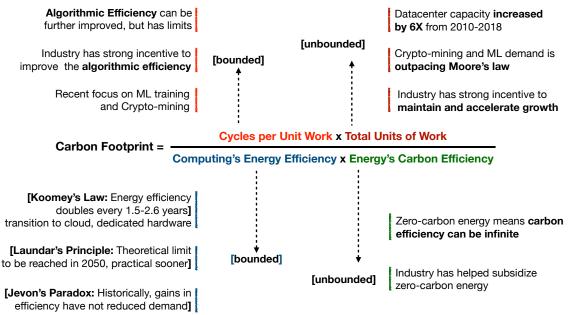
Cost of Energy Has Been Driving Innovation

- Assume 100,000 servers
- · Monthly cost of 1 server
 - 500W server
 - Cost = (Watts X Hours / 1000) * cost per kWh
 - Always-on server monthly cost = \$50
- Monthly cost of 100k servers = \$5M
- What about the cost of cooling?
 - Use Power Usage Effectiveness (PUE)
 - PUE = 2 -> double the cost
 - PUE =1.2 -> 10% extra on \$5M (\$6M)

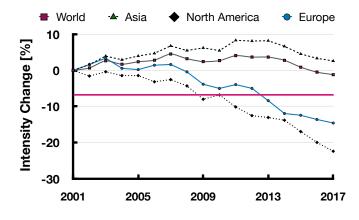

Shift from Traditional Data Centers to Cloud

Source: Global data centre energy demand by data centre type, 2015-2021 - IEA

8


Energy Efficiency Gains Moving Forward

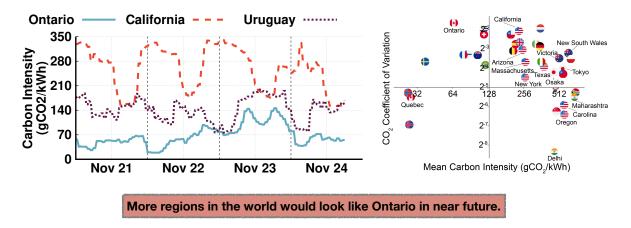
9

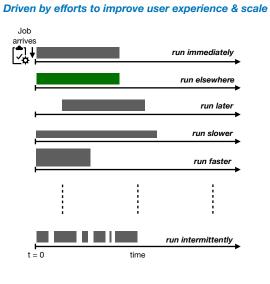

Most optimistic estimates suggest 6% increase from 2010-2018

 EPA Report to Congress on Server and Data Center Energy Efficiency (2007)
 Recalibrating Global Data Center Energy-use Estimates - Eric Masanet (2020)
 Efficiency Gains are Not Enough: Data Center Energy Consumption Continues to Rise Significantly - Ralph Hintemann (2018)

Grid's Carbon Intensity Has Been Decreasing

• Energy's carbon efficiency in the US has improved by 45.6% over 2001-2017


Carbon intensity may never truly reach 0gCO2eq per kWh. It may actually increase in parts of the world.


Source: Ember Global Electricity Review (2022) Source: BP Statistical Review of World Energy Source: Ember European Electricity Review (2022)

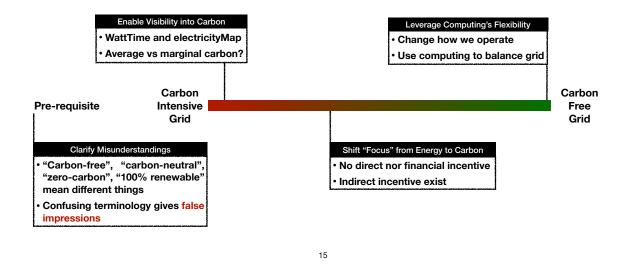
Clean Energy is Variable and Unreliable

 Carbon intensity variation: less than 50g to more than 800g across time and geographical regions.

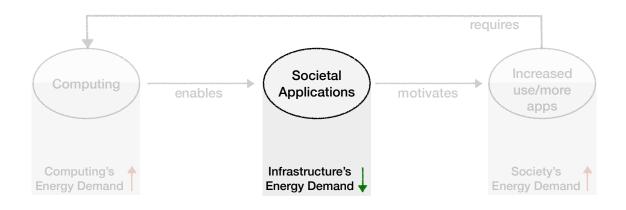
11

The Good News: Computing's Unique Advantages

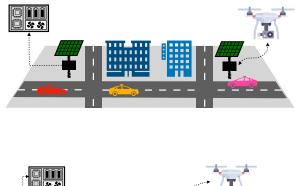
Accounting for and Reducing Embodied Carbon

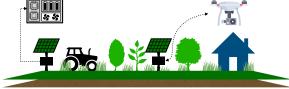

• Carbon emissions from producing products or services, e.g., buildings facilities, manufacturing servers

Embodied	Operational
 Your embodied is someone else's operation Incentivizes buying less or buying 	 Operational is completely under your control Operational emissions are not a
different	solved problem


13

• Focus on embodied can **distract** from operational


Implications for Sustainable Computing



Computing for Sustainability

Computing Use Cases

Improving Buildings and Transportation Sectors

- Building as an example of a distributed system
 - Sense monitor energy, temperature, occupancy etc.
 - Analyze data using computational tools.
 - Control lights, HVAC, doors to reduce energy usage.
- Transportation as an example of a distributed system Sense?
 - Analyze?
 - Control?
- Agriculture as an example of computing use case
 - Sense?
 - Analyze?
 - Control?

17

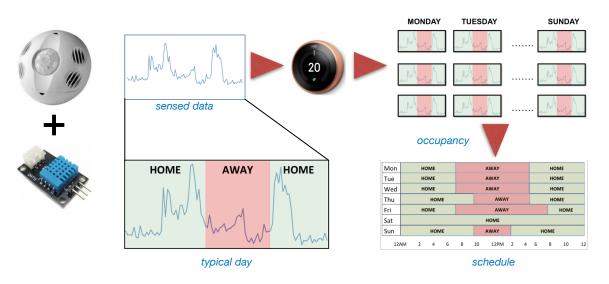
Building Monitoring

- · Power metering at different levels
 - Outlet-level monitoring
 - Meter-level monitoring

Wemo smart plug

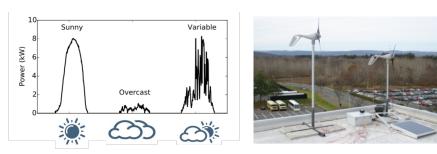
eGauge meter with interface

smart meter


Analyzing the data

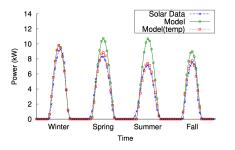
- · Energy monitors / sensors provide real-time usage data
 - Building monitoring systems (BMS) data from office / commercial buildings
- Modeling, Analytics and Predictions
 - · Use statistical techniques, machine learning and modeling to gain deep insights

19


- Which homes have inefficient furnaces, heaters, dryers?
- Are you wasting energy in your home?
- · Is an office building's AC schedule aligned with occupancy patterns?
- When will the aggregate load or transmission load peak?

Reduce Energy Use -> Learning Thermostat

Use Low Carbon Energy -> Use Solar Power


- · Significant growth in renewable energy adoption
 - Roof top wind turbines, solar PV, solar thermal (water heating)
- Highly intermittent
 - · Impacted by cloud cover, temperature, environmental variables

Forecasting Solar Energy

- · Predictive analytics to model and forecast solar energy generation
 - Use machine learning and NWS weather forecasts to predict solar generation

21

· Better forecasts of near-term generation; "Sunny load" scheduling

Use Case - EV Charging

- Solar panels installed in parking lots, rest areas, paid garages
 - · Possible use case in offices and car rental services
- Assumptions
 - Arrival/departure times for EVs
 - Accurate solar predictions
- Intelligent charging
 - When to charge?
 - Which EV to charge?
 - How much to charge?

23

Summary

- Sustainable Computing
 - Demand for computing is growing
 - · Need to serve the demand sustainably
 - Energy efficiency gains reducing
 - Computing has unique advantages
 - Try to optimize computing's carbon efficiency
 - Reduce operational as well as emobodied carbon
- Computing for Sustainability
 - Leverage computing to reduce energy consumption
 - · Leverage computing to enhance use of low carbon energy